On Hilbert coefficients and sequentially generalized Cohen–Macaulay modules

نویسندگان

چکیده

This paper shows that if [Formula: see text] is a homomorphic image of Cohen–Macaulay local ring, then text]-module sequentially generalized and only the difference between Hilbert coefficients arithmetic degrees for all distinguished parameter ideals are bounded.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Hilbert Coefficients and Northcott’s Inequality

Let R be a Cohen-Macaulay local ring of dimension d with infinite residue field. Let I be an R-ideal that has analytic spread `(I) = d, Gd condition and the Artin-Nagata property AN − d−2. We provide a formula relating the length λ(In+1/JIn) to the difference PI(n)−HI(n), where J is a general minimal reduction of I, PI(n) and HI(n) are the generalized Hilbert-Samuel polynomial and the generaliz...

متن کامل

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

متن کامل

Variational inequalities on Hilbert $C^*$-modules

We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory  on  Hilbert $C^*$-modules is studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2022

ISSN: ['1793-6829', '0219-4988']

DOI: https://doi.org/10.1142/s0219498824500555